Fighting Spam with the NeighborhoodWatch DHT

Adam Bender*, Rob Sherwood', Derek Monner*, Nate Goergen*, Neil Spring*, and Bobby Bhattacharjee*
* Department of Computer Science, University of Maryland
Email: {bender, dmonner, nspring, bobby} @cs.umd.edu
T Deutsche Telekom Inc, R&D Labs
Email: robert.sherwood @telekom.de
! Department of Electrical and Computer Engineering, University of Maryland
Email: goergen@umd.edu

Abstract—In this paper, we present DHTBL, an anti-spam
blacklist built upon a novel secure distributed hash table (DHT).
We show how DHTBL can be used to replace existing DNS-based
blacklists (DNSBLs) of IP addresses of mail relays that forward
spam. Implementing a blacklist on a DHT improves resilience
to DoS attacks and secures message delivery, when compared to
DNSBLs. However, due to the sensitive nature of the blacklist,
storing the data in a peer-to-peer DHT would invite attackers
to infiltrate the system. Typical DHTs can withstand fail-stop
failures, but malicious nodes may provide incorrect routing infor-
mation, refuse to return published items, or simply ignore certain
queries. The NeighborhoodWatch DHT is resilient to malicious
nodes and maintains the O(log N) bounds on routing table
size and expected lookup time. NeighborhoodWatch depends on
two assumptions in order to make these guarantees: (1) the
existence of an on-line trusted authority that periodically contacts
and issues signed certificates to each node, and (2) for every
sequence of k£ + 1 consecutive nodes in the ID space, at least one
is alive and non-malicious. We show how NeighborhoodWatch
maintains many of its security properties even when the second
assumption is violated. Honest nodes in NeighborhoodWatch can
detect malicious behavior and expel the responsible nodes from
the DHT.

I. INTRODUCTION

Tracking the IP addresses of known spam sources is a
useful tactic in combating the increasing volume of spam
email. Several databases, or blacklists, of spam-sending IP
addresses—usually of a server running a mail transfer agent
(MTA)—exist to help users and programs classify incoming
email as legitimate or spam. Unlike the email address of the
sender, the actual IP address from which an incoming email
message was received is hard to spoof [1]. The address of any
MTA that relays the message is prepended to the message’s
header. Blacklist operators collect the IP addresses of MTAs
known to source spam and make these collections queriable
via the Internet. Blacklists commonly allow users to access
their database via DNS; such a database is called a DNSBL.

DNSBLs have several drawbacks. First, data delivery is
not secured. DNS responses are weakly authenticated and
are thus susceptible to misdirection, spoofing [2], and cache
poisoning attacks [3]. The need for a secure DNS service is
well-documented, yet the reluctance to adopt such measures

IThis work was partially supported by NSF awards CNS 0626629, ANI
0092806, and CNS 0435065, and NIH award NS35460. N.G. was supported
by a DoD SMART Fellowship.

as DNSSEC [4] indicates that this problem is likely to persist.
Because DNSBLs are available only via DNS, DNSBL queries
are vulnerable to the same attacks as a regular DNS query.

Second, spammers frequently target DNSBLs and other
under-provisioned anti-spam efforts with denial of service
(DoS) attacks [5], [6], [7], [8], [9]. Blue Security [10], creators
of the Blue Frog software that automatically sent opt-out
messages from all of its users whenever one of them received
a spam email, was the target of DoS attacks in May 2006. The
severity of the attacks forced Blue Security to shut down its
service.

A natural response to DoS attacks is to distribute the service
among many peers. For instance, the Okopipi project was an
attempt (now defunct) to create a distributed implementation of
Blue Frog. Not only would the blacklist service itself be able to
distribute its lookup service, but ordinary users who wanted to
contribute could do so by volunteering their resources. Storing
a blacklist in a distributed hash table (DHT) such as Chord [11]
would provide resilience to DoS attacks and is a natural choice
because the simple interactions with a DNSBL exactly match
the put/get interface of a DHT.

However, the sensitive nature of the data stored in such a
DHT would invite attacks on the DHT itself. Not only would
spammers attack individual nodes, they would attempt to join
the DHT in order to subvert it. Most DHTs are not resilient
to such Byzantine adversaries. The few DHTs designed in
such an attack model are inefficient and complex, in that they
occasionally rely on flooding or Byzantine agreement among
a subset of the nodes. The DHT of Castro et al. [12] relies
on redundant routing, which floods messages along multiple
paths, while S-Chord [13] requires occasional flooding of
O(log® N) messages.

We propose DHTBL, a secure, distributed implementation
of a blacklist. DHTBL consists of two components: the
NeighborhoodWatch secure DHT which stores the blacklist
and a client that queries the DHT about individual IP addresses
that forward mail. NeighborhoodWatch allows a small set of
trusted nodes to administer a large set of untrusted nodes that
provide secure content delivery. This design greatly increases
the availability and capacity of the service without requiring
that every node be trusted. We take advantage of the fact
that blacklists are already centrally managed; we use this
same authority to manage the nodes in a DHT. We make

one additional assumption: in the flat identifier-space of the
DHT, there is no sequence of k 4 1 consecutive nodes that
are malicious, where k is a system parameter chosen by the
blacklist administrator. That is, at least one in k+1 consecutive
nodes is alive and honest. A larger value of & means that this
assumption is more likely to hold, but also that load on the
trusted nodes increases (Section V-A). NeighborhoodWatch
maintains the logarithmic complexity of original DHTs and
is secure as long as the assumptions are maintained.

Using a relatively small trusted resource to secure a scalable
infrastructure is an important theme in distributed systems that
makes several designs practical. For instance, in cryptography,
a public key infrastructure (PKI) can be established by a
single trusted keypair. Maheshwari et al. [14] present a system,
TDB, which uses a small amounted of trusted storage to build
a trusted database on untrusted hosts. Our system employs
a similar concept, in which few trusted hosts enforce the
correctness of a DHT consisting of many untrusted hosts. The
ratio of trusted hosts to untrusted hosts is only limited by the
bandwidth and processing power of the trusted hosts. The end
result is a potential increase, by several orders of magnitude,
in the number of hosts responsible for content (in this case,
blacklist) distribution.

We do not address some of the general concerns of DNS-
BLs, such as their response time [15] and whether they
are effective against Zipf-like distributions of spammers’ IP
addresses [16]. Studies [16] have shown that 80% of spam
sources are listed in some DNSBL; we believe this, combined
with their popularity, are indicators of their utility.

The rest of this paper is organized as follows. In Section II,
we present the security model for NeighborhoodWatch, the
underlying system on which DHTBL is built. We show the
design of NeighborhoodWatch in Section III and of DHTBL in
Section IV. We analyze some aspects of the DHT in Section V
and present an evaluation in Section VI. Section VII presents
related work, and Section VIII concludes.

II. SECURITY MODEL AND ASSUMPTIONS

Previous designs of secure DHTs [12], [13] are able to
guarantee security when a % fraction of nodes are corrupt.
We adopt a similar model, in that we allow for some fraction
f of the nodes to be malicious, but we do not place hard
bounds on f. Instead, we assume that for every sequence of
k + 1 consecutive nodes in the flat ID space of the DHT, at
least one is alive and honest, where k is a system parameter.
We call this the fundamental assumption. The insight is that
if nodes cannot choose where they are placed in the DHT (an
assumption we justify momentarily), malicious nodes would
have to corrupt a large fraction of the N nodes in the DHT
in order to obtain a long consecutive sequence of corrupted
nodes. By storing sequences of nodes in routing tables, honest
nodes are guaranteed to know of at least one other honest node
that is “near” a given point in the DHT. For a given value of
f, a corresponding k£ can be chosen so that the fundamental
assumption holds with high probability. In Section V-A, we

analyze how likely it is that the fundamental assumption holds
for given values of f, k, and N.

As the fraction of malicious nodes in the DHT increases, the
likelihood that the fundamental assumption holds decreases. If,
however, malicious nodes could be discovered and removed
from the DHT, then the number of malicious nodes would be
kept at a manageable level. In order to remove nodes from the
DHT, we assume the existence of an on-line trusted authority,
potentially distributed, that periodically issues signed certifi-
cates to nodes. These certificates are called neighborhood
certificates, or nCerts, for reasons which are explained in
Section III. nCerts have a relatively short expiration time
compared to the average lifetime of a node. Nodes need a
current, valid nCert in order to participate in the system. In
order to remove a malicious node, the authority simply refuses
to sign a fresh nCert for that node.

Maintaining security is then a matter of detecting malicious
nodes. We introduce several mechanisms by which misbehav-
ior can be detected and proven. When a node is known (or
strongly suspected) to be malicious, it is expelled from the
system. Thus, all nodes have incentive to behave properly.

We assume that the adversary cannot place a corrupt node
anywhere it wishes in the DHT. We enforce this condition by
requiring that nodes obtain a signed public key before they
are admitted into the DHT. This certificate is distinct from a
neighborhood certificate and may even be issued by a separate,
off-line authority. We call this authority the CA. Nodes use
these certificates to sign responses to certain DHT messages.
In addition, a node’s ID is taken to be the hash of its public
key. This prevents nodes from choosing their location in the
DHT. By making certificates expensive to acquire, as do Castro
et al. [12], we combat the Sybil attack [17].

Public key certificates serve another purpose as well: when
a node’s key certificate expires, it must obtain a fresh one.
As a consequence, its ID will change, and the node will be
relocated to a new portion of the DHT. Although this is a
potentially expensive operation, it also limits the lifetime of a
sequence of k 4 1 corrupt nodes, as eventually they will be
redistributed.

Additionally, NeighborhoodWatch requires all nodes to have
loose clock synchronization. If a node’s clock differs from the
system clock, it may impair its own ability to participate ef-
fectively in DHT operations, but it will not harm the operation
of other nodes.

III. THE NEIGHBORHOODWATCH DHT

In this section, we present the NeighborhoodWatch DHT.
The DHT supports three operations, all of which are reliable
when the fundamental assumption holds:

1) lookup(id), which takes an ID and returns a reference
(nCert) to the node responsible for storing items with
the given ID

2) publish(id,item), which stores data item item in the
DHT under ID ¢d at the node responsible for ¢d as well
as its k successors

3) retrieve(id), which returns either a data item published
under the given ID or a statement, signed by the node
responsible for the ID, that no item was published with
that key.

While NeighborhoodWatch will still operate correctly in
most cases when the fundamental assumption is violated,
security is not guaranteed. Malicious nodes can undetectably
hide published items, prevent new nodes from joining, and
cause routing failures. This motivates the reliance on a trusted
authority: when malicious nodes misbehave, their behavior
can be proven; upon witnessing proof of misbehavior, the
trusted authority can remove malicious nodes from the DHT.
We designed NeighborhoodWatch so that any attempt by a
node to lie about whether or not an item was published will
implicate that node as faulty, and it will be expunged from
the system. Therefore, a corrupt node’s only course of action
is to be maliciously non-responsive. We further show how to
remove such nodes from the DHT, leaving only correct peers.

NeighborhoodWatch is based on Chord [11], which routes
queries using O(log V) messages while requiring each node
to store only O(log N) links to other nodes. These links are
called a node’s finger table. The ID space of Chord is the
integers between 0 and 2 — 1 from some integer m. Chord
orders IDs onto a ring modulo 2. A node with ID x stores
fingers to nodes with ID 2 +2° mod 2™ for integers 0 < i <
m. The successor of n is the node whose ID is immediately
greater than n’s ID modulo 2™. Likewise, the predecessor of
n is the node whose ID is immediately less than n’s.

A. Overview

Unlike S-Chord, which partitions nodes into disjoint neigh-
borhoods, NeighborhoodWatch assigns a neighborhood to
each node. This neighborhood consists of the node itself, its &
successors, and k predecessors. A single node will therefore
appear in 2k + 1 neighborhoods. NeighborhoodWatch requires
2k + 1 nodes to bootstrap.

NeighborhoodWatch employs an on-line trusted authority,
dubbed the Neighborhood Certification Authority, or NCA, to
sign certificates attesting to the constituents of neighborhoods.
The NCA has a globally-known public key, NC A.pk, and
corresponding private key NC A.sk. The NCA may be repli-
cated, and the state shared between NCA replicas is limited to
a private key, a list of malicious nodes, and a list of complaints
of non-responsive nodes.

The NCA creates, signs (using a secure digital signature
algorithm) and distributes neighborhood certificates, or nCerts,
to each node. Nodes renew their nCerts on a regular basis
by contacting the NCA. Similarly, joining nodes receive an
initial nCert from the NCA. nCerts list the current membership
of a neighborhood, accounting for any recent changes in
membership that may have occurred. Using signed nCerts,
NeighborhoodWatch is able to verify the set of nodes that
are responsible for storing an item with ID z.

Nodes maintain and update their finger tables as in Chord.
For each of n’s successors, predecessors, and finger table
entries, node n stores a full nCert (instead of only the node

ID and IP address as in Chord). When queried as part of a
lookup operation, nodes return nCerts rather than information
about a single node.

B. Neighborhood Certificates

A node n has ID n.id, IP address n.ip, port n.port, public
key n.pk (along with a signed certificate from the CA), and
private key n.sk. Let the info of node n be defined as n =
{n.id, n.ip, n.port, n.pk}. The predecessor of n is p(n), the
i’th predecessor of p(n) is p‘(n), and likewise n’s immediate
successors are s(n), s2(n), etc. The range of n is the integer
interval (p(n).id,n.id]. Node n is said to be owner(z) for
any ID z in the range of n.

Malicious nodes may try to subvert lookups by lying about
their range. By including p(n) in nCert,,, NeighborhoodWatch
allows any node to determine the range of n given (a fresh
copy of) nCert,. As new nCerts are issued periodically, it
is possible for a node to hold several nCerts at once. When
queried, a malicious node might present an old nCert in an
attempt to hide a newly-joined node. Therefore Neighborhood-
Watch includes the entire neighborhood of n in nCert, to
serve as witnesses to the freshness of nCert,,. Anyone can
determine the accuracy of nCert,, by querying each member
of the neighborhood and comparing the returned nCerts. If
at least one honest neighbor exists, its nCert will reveal any
hidden nodes and implicate malicious ones.

Epochs nCerts cannot be explicitly revoked—once a cer-
tificate is distributed, it cannot be “called back”, since using
certificate revocation lists requires a publish and lookup in-
frastructure very similar to the one we are trying to build.
Therefore, to prevent malicious nodes from persisting in the
DHT, nCerts must expire periodically. To facilitate this, we
divide time into sequentially-numbered epochs, and have each
nCert specify the last epoch for which it is valid.

There are two kinds of epochs, join and remnew, which
alternate. New nodes may join only in a join epoch; existing
nodes may renew their nCerts only in a renew epoch. The
length of each is a system parameter, though typical values
would be on the order of tens of minutes. The epoch length
is a trade-off between the frequency of overhead incurred by
the recertification process and the length of time that a proven
malicious node can remain in the DHT, since a node can only
be expelled by the NCA refusing its renew request.

The current epoch is denoted by an integer which mono-
tonically increases over time. nCerts issued in a join epoch
e; are valid through epoch e; + 1, i.e., the next renew epoch.
nCerts issued in renew epoch e, are valid through epoch e, +2,
i.e., the next renew epoch. A node who fails to renew its nCert
before it expires has effectively left the system, as other nodes
simply ignore expired nCerts.

The reason for separating the periods in which a node can
join from the periods where nodes renew their nCerts is to
prevent the following scenario: an honest node n requests that
an NCA replica renew nCert,,. While this is in progress, a new
node j joins, perhaps through a different NCA replica, and an
nCert,, containing j is issued to n. Afterward, the initial renew

operation completes, and n receives a new nCert without j.
This would produce inconsistencies among the nodes in n’s
neighborhood, and could potentially lead to n being implicated
as malicious. By separating join and renew epochs. only nodes
who are affected by a joining node receive new certificates in
a join epoch, and neighborhoods are stable (barring removal
of unresponsive nodes) throughout a renew epoch.

nCert Format Let Signy (msg) = (msg, ok (msg)) denote
the application of a secure digital signature algorithm to msg,
where ok (msg) is the secure digital signature of msg with
key K. The format of nCert,, is:

n = {n.id, n.ip, n.port, n.pk}

—_—

nodes = p%), oy p(n),n, s(n), ..., sk(/\n)
nCert, = Signyca o1 (Rodes, €)

where e is the last epoch in which nCert,, is valid.

C. Routing

NeighborhoodWatch uses iterative routing, meaning that a
querier ¢ searching for owner(id) will contact each hop on
the path to owner(id), rather than passing the query off for
another node to route. This allows ¢ to recover from routing
failures. By using iterative routing, ¢ can ensure that each step
of the routing protocol makes progress towards owner(id).

To execute lookup(id), a querier ¢ that is a DHT node
examines its finger table to find the nCert of the closest known
predecessor of ¢d; call this node p. If ¢ is not a DHT node, it
requests the nCert of any DHT node it knows about; in this
case, that node is called p. In either case, g requests that p
provide the nCert of its closest known predecessor of id. Let
the nCert that p returns be nCert,,c,;. ¢ examines nCert,, .+
and determines if it is valid. Several criteria must be met for
nCert,,; to be valid: clearly, it must be signed by the NCA
and it must not have expired. Also, next.id must be at least
halfway between p and id, which will be the case if p’s finger
table is correct. If next does not allow ¢ to progress at least
half of the distance to ¢d, which may be the case if next’s
finger table has not stabilized, then ¢ has the option of either
querying a different node in any nCert it has or continuing
with a sub-optimal hop. If nCert,.,; is valid, g replaces p
with next and repeats the process, stopping when it receives
a valid nCertoyner(a)-

If p responds with an invalid nCert, or simply doesn’t
respond, ¢ queries one of the other nodes listed in nCert,,.
If any of these nodes is correct, ¢ is able to make progress
towards ¢d while querying at most 2k + 1 nodes. Each
successful query halves the remaining distance between p and
id, resulting in at most O((2k + 1) log N') message per query.

A malicious node m that was previously owner(id), but has
since relinquished that range to a newly joined node j, may
present an old but valid nCert,,, which shows m as owner (id)
instead of j. Note that this can only occur during the epoch
that j joins or the following recertify epoch; after that time, the
nCert,, showing m as owner(id) will be expired. In this case,

m cannot suppress the keys for which j is now responsible,
as will be shown in Section III-G.

D. Join and Renew

To renew its nCert, a node n presents nCert,, to an NCA
replica. The NCA obtains the nCert of each node in nCert,
to check the validity of nCert,, (i.e., to make sure n is not
presenting an old-but-unexpired nCert that does not contain
a newly-joined node). If nCert,, matches the view of n’s
neighborhood that the other nCerts describe, the NCA issues a
fresh nCert to n, containing the same neighborhood of nodes,
but with an expiration time of the next renew epoch.

The process of joining the DHT is similar to that of
renewing, but more nodes need to be queried since more
nCerts need to be issued. When a node n wishes to join
a NeighborhoodWatch instance, it finds nCertyyyner(n.iq) and
presents it to an NCA replica. First the NCA ensures that
n has a valid private key certificate from the CA. Then
the NCA uses the nCert to retrieve the nCerts of the &
successors and k predecessors of owner(n.id). The NCA then
requests other nCerts as necessary to obtain a full view of the
neighborhoods of each node in nCert,yner(n.id)» SO as to verify
the neighborhoods of each node that will receive a new nCert
when n joins. The NCA then creates new nCerts for n and each
of the 2k +1 nodes in nCertyyper(n.iq) (Cwner(n.id) becomes
s(n)), setting the expiration epoch for each to the next (renew)
epoch e, and sends each new nCert to the associated node. The
join process is shown in Figure 1.

Once n has joined the DHT, it fills in its finger tables by
querying its neighbors for the appropriate nCerts. It also stores
the nCerts of all nodes in its neighborhood.

When a node n receives a new nCert, the NCA verifies
n’s neighborhood. The NCA contacts each node in nCert,,.
If a contacted node provides a conflicting certificate, it is
malicious; if it provides nothing, it is unresponsive. Such
nodes are not included in the new nCert,, and are replaced by
the appropriate neighbor. To prevent inconsistencies in issued
certificates, the NCA replicas must coordinate to maintain a
shared list of malicious and unresponsive nodes and refuse to
insert these nodes into any granted nCert.

E. Publishing

NeighborhoodWatch provides a publish(id,item) opera-
tion, which stores item in the DHT under id. Let n =
owner(id). When a node p wishes to publish item to the
DHT with key id, it first finds nCert,,. Recall that the nodes
in nCert,, include n,s(n), s?(n), ..., s*(n). Let these nodes be
the publish nodes of nCert,,. p will contact each of the publish
nodes and request that the node store item. This models the
replication procedure in Chord, where the k£ nodes succeeding
id store copies of item.

Let d be a publish node that p contacts. If d decides to store
the item, it returns a signed receipt that it has stored the item.
The format of a receipt is:

Riq.q = Signg 4, (id, Hash(item), d.id, e)

(1) Node n requests to join by
contacting an NCA replica.

P pi(n)

(4) NCA requests neighborhood certificates
from k predecessors and k successors of n

Fig. 1.

where e is the current epoch. This receipt is used to implicate
d if it maliciously refuses to return the item when requested
to do so.

If d does not respond, then p considers d to be unresponsive
and informs the NCA. The consequences of this action are
detailed further in Section ITI-H.

Stored items are self-certifying [18], meaning that given
the pair (id, item), there exists a way to verify that the object
published under ID id is in fact item. One technique for self-
certifying items is to set id = hash(item), for some collision-
resistant hash function. Another way to make items self-
certifying is for the publisher to sign them, assuming anyone
retrieving the item can locate the publisher’s public key. By
using self-certifying items, malicious nodes are prevented from
returning “fake” items in response to a retrieve request.

FE. Receipt Storage and Retrieval

When a node p publishes a data item to the DHT, it receives
(up to) k + 1 receipts from the nodes that store the item. In
order to use receipts to expose nodes that refuse to return
published items, the receipts must be made available to anyone
that might observe a dishonest response to a retrieve request.
One option is for p to store the receipts for items it publishes
and give copies to whomever requests such a receipt. However,
this introduces two problems: first, if p goes offline or crashes,
the receipts of all items p published become unavailable.
Second, when looking for an item published in an ID, a node
must know who published that item in order to find the receipt.
This is not feasible in the general case where the querier may
not know (or care) who published the item it seeks.

We propose a mechanism by which receipts are stored
in the DHT itself. Of course, receipts must be stored at
IDs independent of the item being stored, so that with high
probability a corrupted neighborhood does not store all the
receipts for items published to that neighborhood. Also, we

(2) NCA returns an nCert to n,
who uses it to find owner(n.id).

n
pn) @

(5) Nodes return current certificates and
the NCA verifies their consistency

n.id

s’(n)

(6) NCA issues fresh certificates
to all affected nodes

The join process in the NeighborhoodWatch DHT. Here k£ = 3.

want to avoid the problem of storage explosion: the publish
of a single item could result in the storage of k + 1 receipts;
if receipts of those publish operations result in receipts stored
in the DHT, another (k + 1)? items would need to be stored,
and so on. We define a limit on the receipt factor, RF', that
dictates how many levels of receipts are published to the DHT.
This paper considers the case where RF' = 1, that is, receipts
are stored in the DHT, but receipts-of-receipts are not stored.

When a publisher p receives a receipt R;q 4 from d for an
item published under ID id, p publishes the receipt under the
ID R.id = Hash(id||d.id) using the normal publish protocol.
R;q,q is then stored on the k + 1 nodes following R.id in the
DHT. p receives receipts from these nodes to verify that the
publish is successful, but does not publish these receipts. A
node requesting an item with ID item.id from d can check
if d has created a receipt R because that node knows both
item.id and d.id, and can thus determine R.id.

Assume d is malicious and returns negative responses to
retrieve requests for item ¢. For d to remain undiscovered, not
only must the £+ 1 nodes responsible for storing ¢ be corrupt,
but all k£ + 1 copies of receipts for ¢ must be unavailable. For
this last condition to be true, corrupt neighborhoods of k + 1
nodes must exist around each of the receipts. This occurs with
probability close to (pk“)kﬂ, which is extremely small even
for large values of p and small values of k.

G. Retrieving

Like the publish(id,item) operation, a node r executing
retrieve(id) also begins by using the lookup() operation
to find nCertyyper(iq)- T chooses a publish node d from
nCertyyner(id) and requests item from d by sending id. If
d responds with item (which r can verify because items are
self-certifying), retrieve(id) returns item and terminates. If
d responds saying that no such item exists, it may be the
case that item was never published, or it may be that d is

trying to subvert r’s request. For this reason, we require that
all negative responses be signed by the responding node. r
stores d’s response and requests ¢tem from another publish
node, until either item is found or all publish nodes have
returned a negative response.

If a node d that r contacts responded with a signed statement
that it does not have item, yet one of d’s neighbors did
possess item, then r searches for R;q 4. If it is able to find
such a receipt, it presents the receipt and the signed negative
response to the NCA, who expels d from the DHT. Even if
all nodes issue a negative response, if r suspects that item
was in fact published under id, then it may still search for
receipts. Collusion-resistant receipt storage is discussed in
Section III-F, and the process of expelling nodes is discussed
in Section III-H.

A malicious node thus risks exposing itself if it issues a
receipt when it intends to not return items, returns a negative
response when an item was published to it, or returns an item
that was not published. A malicious node can avoid exposure
only by not responding to any requests.

H. Removing malicious and unresponsive nodes

Previously in this section, we have shown that any attempt
by a malicious node to “lie” to an honest node, whether it be by
refusing to return an item it stores or returning an unpublished
item, will cause the node to be expelled from the DHT (as a
result of the NCA not issuing a fresh nCert to the node). Thus
it is in the best interest of malicious nodes to be maliciously
unresponsive, that is, to communicate with the NCA to ensure
that it receives fresh nCerts, yet not respond to any messages
from peers. Here, we show how the system can evict such
unresponsive nodes. This property comes at the cost of storing
state at the NCA. Specifically, the NCA records the list of
nodes that have “complained” about a given DHT node, as
well as a list of expelled nodes to prevent them from joining.

Whenever a node d fails to respond to a message from node
n, n sends a statement to the NCA to that effect. If the number
of nodes that complain about d crosses some threshold, the
NCA then determines whether d is being maliciously unre-
sponsive. The NCA does this by finding random nodes in the
DHT and asking them to submit requests to d. These nodes
report to the NCA whether or not d responded. The NCA
must do this so that d does not detect that it is being probed.
Therefore the requests should be distributed over time and
come from a randomly selected set of nodes.

The NCA requests m DHT nodes to make a request to
d and observes the results. Let 0,5, and 04..q be two
parameters that the NCA uses in determining whether d should
be expelled:

o If more than 6;;,. X m nodes report d as alive, the NCA
takes no further action.

o If fewer than 64.,4 X m nodes report d as alive, the NCA
expels d.

o If number of “alive” responses is between 64c,q X m and
Oative X m, the NCA re-runs the test at a later time.

O.1ive can be set fairly high, as even if d is not malicious but
still fails to respond to many requests, it should be removed
from the DHT for better performance. ;.. should be selected
so that the probability of selecting 64, X ™ malicious
nodes, when an f-fraction of the DHT is malicious, is low.
This process is similar in spirit to the send challenge of
PeerReview [19].

1. Protecting the NCA

In order for NeighborhoodWatch to function properly, the
NCA must be continuously available. Distributing the NCA
helps to ensure against operational errors and localized fail-
ures, but even widely-distributed systems are vulnerable to
DoS attacks. In order to protect the small set of NCA replicas,
we leverage the fact that only certain hosts (DHT nodes) have
a need to contact the NCA. Note that this condition does not
apply to current DNSBLs; every mail client must be able to
query the DNSBL hosts.

In order to prevent large-scale DoS attacks, the administra-
tors of the NCA can employ a system similar to Platypus [20].
Platypus provides authenticated source routing by using net-
work capabilities. Network capabilities are (waypoint, princi-
pal) pairs that are inserted into packets, where waypoint is a
router through which the packet is to be routed and principal
is the entity responsible for sending the packet. The owners of
capabilities can create delegated capabilities which other users
can use.

To apply Platypus to securing an NCA replica, routers
(waypoints) in an NCA replica’s ISP filter all traffic to the
NCA replica that does not have a valid capability. When a node
wishes to join NeighborhoodWatch, it receives a delegated
capability from an existing node. This allows it to contact
the NCA to obtain its initial nCert. The NCA also includes
a new capability that is unique to the newly-joined node and
the waypoint through which the node will send requests to the
NCA.

An attacker may try to DoS the NCA using compromised
nodes that have obtained valid capabilities. However, Platypus
allows capabilities to be revoked at waypoints; the attack can
be mitigated by revoking the capabilities of any attacking
nodes. In addition, routers can identify and drop all incoming
packets that have delegated capabilities, if they are being used
for attacks.

It is also possible to protect the NCA with architectures like
SOS [21] and Mayday [22], which are designed to protect a
vital service during emergencies. Due to space constraints, we
will omit discussion of how to employ these architectures to
protect the NCA.

IV. DHTBL: BUILDING A BLACKLIST ON TOP OF
NEIGHBORHOODWATCH

Building a blacklist on top of NeighborhoodWatch is
straightforward. An organization, Org, interested in main-
taining a blacklist operates a set of NCA nodes. Org has a
public/private keypair (Org.pk, Org.sk).

Org publishes entries, consisting of IP addresses of hosts
known to source spam, to the blacklist, akin to how DNSBLs
add records now. Once Org determines that an address should
be blacklisted, they sign the IP address with Org.sk. The
signature is published to the DHT using the hash of the IP
address as the key. When a client wishes to know if a certain
IP address ¢p is blacklisted, it computes the hash of ip, queries
a DHT node using the hash as the key, and receives a response.
If the response is a signature, the client uses Org.pk to verify
that it is a valid signature of ip.

By using digital signatures, DHTBL is able to provide
assurances that regular DNSBLs cannot. DNS is vulnerable
to many types of attacks, and responses are easy to forge [2].
Because DHTBL delivers signed data to the client, there is
negligible probability that an adversary can alter a record that
was published to the DHT, nor produce a signature implicating
an innocent IP address.

DHTBL can also be extended beyond one organization.
There are many DNSBLs in existence, and mail clients often
contact more than one for each incoming email. DHTBL
allows different organizations to publish their records in a
single repository. Each organization may have its own private
key, so that clients know which organization(s) has blacklisted
a given IP address. Nodes would only accept items that
have been signed by a key belonging to one of these known
organizations. Combining existing blacklists into a single,
trusted service saves bandwidth, and potentially time, at the
client.

NeighborhoodWatch nodes can consist of additional hosts
provided by Org or volunteers; customers of the blacklist
could be required to participate as compensation for use of
the service. We believe the most likely scenario of a DHTBL
deployment would consist of a few nodes from each ISP that
wishes to make use of DHTBL’s service. These nodes would
be similar to DNS servers: reliable (thus minimizing churn)
and well-maintained (thus limiting the number of malicious
nodes). Each node requires a public key certificate to join
the DHT; requiring nodes to apply for certificates discourages
spammers from obtaining too many while permitting ISPs to
obtain several.

One problem of storing records in a DHT, as opposed to a
hierarchical database, is that we lose the ability to aggregate
blacklisted prefixes. To blacklist an entire /24 network, a
DNSBL needs to store only one record, while 256 entries need
to be created and published to the DHTBL. We do not believe
this is a serious problem, namely because of the vast increase
in storage that DHTBL can provide compared to a DNSBL run
by a single organization. We are also looking into methods by
which multiple records can be aggregated without affecting
the performance of lookup operations.

V. ANALYSIS

In this section, we analyze two aspects of Neighborhood-
Watch: how likely the fundamental assumption (that each
sequence of k + 1 nodes contains at least one node which is
honest and alive) will hold as a function of the probability that

70

60

TAATN
0 UTAN

50

40

30

20

10 +

Number of corrupt neighborhoods

Fig. 2. The expected number of corrupt neighborhoods as function of the
probability that a node is bad. Here, N = 300.

a random node is malicious, and the cost of storing an item
and its receipts in the DHT. These components, along with
the certification process (which we evaluate in Section VI),
are the ways in which NeighborhoodWatch differs most from
traditional DHTs. As other operations, i.e. lookup, are not
dramatically different than those of Chord, we omit their
analysis due to space constraints.

A. Validity of fundamental assumption

If the fundamental assumption is violated, then Neighbor-
hoodWatch cannot guarantee that a retrieve(id) operation will
succeed, even if an item has been published to the DHT under
id. Note that lookup(id) operations will be successful as long
as there is no sequence of 2k 41 nodes that are all malicious.
To examine the likelihood that the fundamental assumption
holds, we simulated an instance of the DHT and counted the
number of sequences of length k+1 that violate the assumption
as a function of N (the number of nodes), k (the number of
successors stored in a certificate), and f (the probability that
a randomly-chosen node is malicious).

For a system with IV nodes, there are N sequences of k+1
nodes. Let a node be bad with probability f. Each sequence
individually violates the assumption with probability f**1.
However, the sequences are not independent of each other; the
expected number of bad sequence is not N x f¥+1 (though
this is a reasonable approximation for small f).

In Figure 2 we plot the expected number of bad sequences
for several values of k as a function of f. Note that the
greater the value of N, the higher chance that there is a
corrupt sequence. However, even when f = 0.5, the number
of expected bad sequences is small (below 1 when k = 8).
This gives an improvement over Castro et al.’s system [12]
and S-Chord [13], which are only secure when f < 0.25.

B. Cost of storing items in DHT

The NCA publishes signed records of spammer’s IP address
in the DHT. Each record consists of the signature of the hash of
the IP address. We used 40-byte ECDSA signatures (described
in Section VI) in our implementation; records are only 40
bytes.

0.4
|
03} 1 I
— I
) T
[} L
£ 0.2 .
= T
0.1
0 ‘
1 2 3 4
k
Fig. 3. Recertification times vs k. The certificate size is 2k + 1. Vertical

bars represent 95% confidence intervals.

In order to store a B-byte item in NeighborhoodWatch, k41
copies of the item are stored. Thus, B(k+1) bytes are required
for storing copies of the item. In addition, k£ + 1 receipts are
stored in the DHT. Each receipt consists of two IDs, one hash,
one timestamp (4 bytes), and one signature. Assuming that IDs
and hashes are 20 bytes (the length of a SHA-1 hash) and that
signatures are 40 bytes, receipts consume 104 bytes.

Each publish results in k£ + 1 receipts that are stored in the
DHT. Each receipt is stored by k£ 4 1 nodes. Thus storing an
item in the DHT incurs an additional cost of 104x(k+1)? bytes
to store receipts, for a total cost of (k + 1)(B + 104(k + 1))
bytes required to reliably store a B-byte item. Thus, storing
a single IP address consumes 104k? + 248k + 144 bytes of
system-wide storage.

VI. IMPLEMENTATION AND EVALUATION

We developed and deployed an implementation of Neigh-
borhoodWatch on approximately 70 PlanetLab [23] nodes. The
implementation is coded in 2400 lines of Ruby. For digital sig-
natures, we used the elliptic curve digital signature algorithm
(ECDSA) provided by OpenSSL. The ECDSA code is written
in C++, with a wrapper written in SWIG. The ECDSA keys in
our implementation are 160 bits long, resulting in signatures
that are 320 bits long.

PlanetLab nodes were selected to create a large diversity of
geographic node locations, latencies, and response times. After
deploying NeighborhoodWatch, we then collected statistics of
our secure DHT in operation, to better understand the response
times required by the routine mechanisms involved in building
and maintaining our secure DHT.

In Figure 3, we show the average time in seconds for a
recertification operation to complete. The average recertifi-
cation time depends on the length of a timeout. When the
NCA requests node certificates from nodes, it will wait for
up to timeout seconds before requesting the node’s nCert
again; if the node does not respond to a second request, the
NCA considers the node dead and replaces it with another.
If tiémeout is too low, churn is unnecessarily introduced,
whereas if timeout is too high, unresponsive nodes will have
a greater effect on the average recertification time. When

running experiments on PlanetLab, we set timeout to 5
seconds.

VII. RELATED WORK

We discuss two categories of related work: those focused
on fighting spam, including those that use DHTS to do so, and
those focused on DHT security considerations and the design
of secure DHTSs.

Spam Several previous works have focused on analyzing the
characteristics of spam and presented ways to combat it. Jung
and Sit [16] performed a study in which they observed that
DNSBL lookups from a single university department account
for almost 500,000 DNS queries per day. This accounted for
14% of all DNS queries.

In addition to using blacklists [24], [25] that identify spam
by the IP address of the sender’s MTA, clients can identify
spam based on the content of email messages. Employing
Bayesian networks [26] as a classification technique is cur-
rently a common practice.

Other work has explored using a DHT to provide decen-
tralized content-based spam filtering. Zhou et al. [27] build
a distributed text similarity engine based on a relaxation of
DHTs in which a published item does not have a unique ID,
but is instead index by a feature vector. Upon receipt of an
email, a client searches the DHT to see if a similar message
has been marked as spam. If not, the email is delivered. If that
email is later marked as spam, it publishes the feature vector
of the message so that other clients will learn that similar
message are spam.

HOLD [28] is a method to encourage the adoption of DHT's
by leveraging DNS to provide a key-based routing service.
The authors suggest that DNSBLs be hosted on a DHT to
withstand DoS attacks. However, they do not address the
security requirements of the DHT, and their entire system is
based on legacy DNS, which we have already argued is an
insecure method of transmitting information.

Damiani et al. [29] present a structured P2P network that
allows mail clients to query other mail servers as to whether
an email is spam. Mail servers track the reputation of other
servers, to weigh the validity of their responses.

Trinity [30] is a system which uses a DHT to identify email
sent from hosts that are likely to be part of a botnet. The
DHT tracks email sources and the number of emails sent by a
source in a short time span. While the system is able to track
the number of emails a host sends in a space-efficient manner,
it requires secret keys to be shared between each DHT node
and updated at regular intervals, which is difficult to enforce
in dynamic systems like DHTs.

DHTSs and security Distributed hash tables (DHTs) were
introduced as a method of organizing peer-to-peer nodes to
provide decentralized storage. The intent of the original DHT
protocols (such as Chord [11], CAN [31], and Pastry [32])
was to minimize both lookup time and the amount of routing
state stored at each node. For instance, Chord requires nodes to
store links to O(log N) other nodes and queries take O(log V)
messages for a DHT with N total nodes.

Sit and Morris [33] describe several ways in which ad-
versarial nodes may attempt to subvert a DHT. Malicious
nodes might attempt to route requests to other incorrect nodes,
provide incorrect routing updates, prevent new nodes from
joining the system, and refuse to store or return items.

Castro et al. propose a system in which secure routing
can be maintained even when up to i of the nodes are
malicious. Their system counters the Sybil attack [17], in
which a single malicious node joins the DHT in multiple
locations, by requiring each node to have a certificate that
binds its ID to the node’s public key. These certificates are
provided by an off-line certificate authority, who limits the
number of certificates issued to a single entity. When a node
detects that one of its queries for owner(z) has resulted in a
node that is unlikely to be owner(z), it floods its request along
multiple paths, potentially requiring a number of messages that
is polynomial in the number of nodes.

The concept of grouping consecutive nodes into neighbor-
hoods has been a feature of several secure DHT designs. Fiat,
Saia, and Young propose S-Chord, which is also resilient to a
i fraction of malicious nodes. S-Chord partitions consecutive
nodes into swarms, which act as the basic functional unit
of the DHT. Lookups in S-Chord take O(log® N) messages
(compared to O(log N) in NeighborhoodWatch) and each
node stores O(log® N) links (compared to O(log N)). Myr-
mic [34] is a secure DHT that was developed independently
that makes similar system assumptions as we do. However,
Myrmic does not consider securing the publish operation and
has no mechanism for removing malicious nodes from the
DHT when they are discovered. Bhattacharjee et al. [35]
present a lookup primitive which can be verified through the
use of threshold cryptography.

VIII. CONCLUSION

In this paper, we have presented the NeighborhoodWatch
DHT, which is secure against a large fraction of malicious
nodes. The system depends on a centralized (though repli-
cated), trusted authority which contacts each node on a regular
basis, as well as the assumption that sequences of consecutive
corrupt nodes are not arbitrarily long. NeighborhoodWatch
consists of a small set of trusted hosts that manage a large
set of untrusted hosts, thereby allowing security guarantees to
scale by orders of magnitude. By using an innovative receipt-
storing scheme and digital signatures, NeighborhoodWatch is
able to detect and prove malicious behavior; a corrupt node’s
only course of action is to be maliciously non-responsive. The
centralized authority can remove malicious and non-responsive
nodes from the DHT, leaving only correct peers.

We build DHTBL, a blacklist containing IP addresses of
known spammers, on top of NeighborhoodWatch. DHTBL
provides a secure, resilient blacklist service that also allows
for secure message delivery (unlike systems built on top of
DNYS).

REFERENCES

[1] J. Goodman, “IP addresses in email clients,” in CEAS, 2004.

[2]
[3]

[4]

[5]
[6]
[7]
[8]
[9]
[10]

(11]

[12]

[13]
(14]
[15]
[16]

(17]
[18]

[19]
[20]
[21]
[22]
(23]
[24]

[25]
[26]

[27]

(33]
[34]

[35]

D. Kaminsky, “Black ops 2008 — its the end of the cache as we know
it,” http://www.doxpara.com/DMK_BO2KS8.ppt.

L. Yuan, K. Kant, P. Mohapatra, and C.-N. Chuah, “Dox: A peer-to-
peer antidote for DNS cache poisoning attacks,” in IEEE International
Conference on Communications, 2006.

R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose,
“DNS Security Introduction and Requirements,” RFC 4033 (Proposed
Standard), Mar. 2005. [Online]. Available: http://www.ietf.org/rfc/
rfc4033.txt

D. Tynan, “Sobig may be working for spammers,” http://www.pcworld.
com/article/112261/sobig_may_be_working_for_spammers.html.

J. Leyden, “Spamhaus repels DDoS attack,” http://www.theregister.co.
uk/2006/09/18/spamhaus_ddos_attack/.

S. Linford, “Spammers release virus to attack spamhaus.org,” http://
www.spamhaus.org/news.lasso?article=13.

Spamhaus, “Virus and ddos attacks on spamhaus,” http://www.spamhaus.
org/attacks/viruses.html.

Help Net Security, “DDoS attack hits clickbank and spamcop.net,” http:
/Iwww.net-security.org/news.php?id=2966.

R. Lemos, “Blue security folds under spammer’s wrath,” http://www.
securityfocus.com/news/11392.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for Internet applica-
tions,” in SIGCOMM, 2001.

M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach,
“Secure routing for structured peer-to-peer overlay networks,” in OSDI,
2002.

A. Fiat, J. Saia, and M. Young, “Making chord robust to Byzantine
attacks,” in ESA, 2005.

U. Maheshwari, R. Vingralek, and W. Shapiro, “How to build a trusted
database system on untrusted storage,” in OSDI, 2000.

A. Ramachandran, D. Dagon, and N. Feamster, “Can DNS-based black-
lists keep up with bots?” in CEAS, 2006.

J. Jung and E. Sit, “An empirical study of spam traffic and the use of
DNS black lists,” in IMC, 2004.

J. Douceur, “The Sybil attack,” in IPTPS, 2002.

I. Clarke, S. Miller, T. Hong, O. Sandberg, and B. Wiley, “Protecting
free expression online with Freenet,” IEEE Internet Computing, 2002.
A. Haeberlen, P. Kouznetsov, and P. Druschel, “PeerReview: Practical
accountability for distributed systems,” in SOSP, 2007.

B. Raghavan and A. C. Snoeren, “A system for authenticated policy-
compliant routing,” in SIGCOMM, 2004.

A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: secure overlay
services,” in SIGCOMM, 2002.

D. G. Andersen, “Mayday: distributed filtering for Internet services,” in
USITS, 2003.

A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak, “Operating
systems support for planetary-scale network services,” in NSDI, 2004.
SpamCop, http://www.spamcop.net/.

Spamhaus, http://www.spamhaus.org/.

M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz, “A Bayesian
approach to filtering junk E-mail,” in AAAI Workshop on Learning for
Text Categorization, 1998.

F. Zhou, L. Zhuang, B. Y. Zhao, L. Huang, A. D. Joseph, and J. Kubia-
towicz, “Approximate object location and spam filtering on peer-to-peer
systems,” in Middleware, 2003.

J. Considine, M. Walfish, and D. G. Andersen, “A pragmatic approach
to DHT adoption,” Boston University, Tech. Rep., 2003.

E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati, ‘“P2P-
based collaborative spam detection and filtering,” in P2P, 2004.

A. Brodsky and D. Brodsky, “A distributed content independent method
for spam detection,” in HotBots, 2007.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in SIGCOMM, 2001.

A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object lo-
cation and routing for large-scale peer-to-peer systems,” in Middleware,
2001.

E. Sit and R. Morris, “Security considerations for peer-to-peer dis-
tributed hash tables,” in IPTPS, 2002.

P. Wang, N. Hopper, 1. Osipkov, and Y. Kim, “Myrmic: Secure and
robust DHT routing,” U. of Minnesota, Tech. Rep., 2006.

B. Bhattacharjee, R. Rodrigues, and P. Kouznetsov, “Secure lookup
without (constrained) flooding,” in WRAITS, 2007.

